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-------------------------------------------------------------------ABSTRACT-------------------------------------------------------------- 
This paper discusses genetic algorithms that can automatically generate test cases to test selected path. This 
algorithm takes a selected path as a target and executes sequences of operators iteratively for test cases to evolve. 
The evolved test case can lead the program execution to achieve the target path. An automatic path-oriented test 
data generation is not only a crucial problem but also a hot issue in the research area of software testing today.  
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I. INTRODUCTION 

Software being utilized in various situations and software 
quality becomes more important than ever. Being main 
means of software quality assurance, software testing is 
very laborious and costly due to the act that it is accounts 
for approximately 50 percent of the elapsed time and more 
than 50 percent of the total cost in software development 
[4, 5]. 
Automatic test data generation is a key problem in 
software testing and its implementation can not only 
significantly improve the effectiveness and efficiency but 
also reduce the high cost of software testing[3, 4]. In 
particular, it is notable that various structural test data 
generation problem can be transformed into a path 
oriented test data generation problem. Moreover, path 
testing strategy can detect almost 65 ercent of errors in 
program under test [8]. 
Although path-oriented test data generation is an 
undesirable problem [6], researchers still attempt to 
develop various methods and have made some progress. 
These means can be classified into two types: static 
methods and dynamic methods. Static methods include 
domain reduction [10, 11] and symbolic execution [12] 
etc. These means suffer from a number of problems when 
they handle indefinite array, loops, pointer references and 
procedure calls [13].  
Dynamic methods include random testing, local search 
approach [14], goal-oriented approach [15], chaining 
approach [16] and evolutionary approach [13, 14-16]. As 
values of input variables are determined when programs 
execute, dynamic test data generation can avoid those 
problems with that static methods are confronted. Being a 

robust search method in complex spaces, genetic algorithm 
was applied to test data generation in 1992 [14] and 
evolutionary approach has been a burgeoning interest since 
then. Related works [17], [16] and [18] indicate that GA-
based test data generation outperforms other dynamic 
approaches e.g. random testing and local search.  
The structure of this paper is organized as follows. Section 
2 gives a brief introduction to Genetic Algorithms.  
Section 3 Basic process flow of path-oriented test data 
generation using GA. Section 4 describes experimental 
settings and gives experimental results based on a triangle 
classification program. Finally, section 5 summarizes the 
paper with conclusions and directions for future work. 

II. GENETIC ALGORITHMS   
Genetic Algorithms begins with a set of initial individuals 
as the first generation, which are sampled at random from 
the problem domain. The algorithms are developed to 
perform a series of operations that transform the present 
generation into a new, fitter generation [22]. 
Each individual in each generation is evaluated with a 
fitness function. Based on the evaluation, the evolution of 
the individuals may approach the optimal solution.  
The most common operations of genetic algorithms are 
designed to produce efficient solution for the target 
problem [15]. These primary operations include: 
a) Reproduction: This operation assigns the reproduction 
probability to each individual based on the output of the 
fitness function. The individual with a higher ranking is 
given a greater probability for reproduction. As a result, 
the fitter individuals are allowed a better survival chance 
from one generation to the next. 
b) Crossover: This operation is used to produce the 
descendants that make up the next generation. This 
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operation involves the following crossbreeding 
procedures: 

i) Randomly select two individuals as a couple from the 
parent generation. 
ii) Randomly select a position of the genes, 
corresponding to this couple, as the crossover point. 
Thus, each gene is divided into two parts. 
iii) Exchange the first parts of both genes corresponding 
to the couple. 

 iv) Add the two resulted individuals to the next 
generation. 
c) Mutation: This operation picks a gene at random and 
changing its state according to the mutation probability. 
The purpose of the mutation operation is to maintain the 
diversity in a generation to prevent premature convergence 
to a local optimal solution. The mutation probability is 
given intuitively since there is no definite way to determine 
the mutation probability [22]. 
Upon completion of crossover processing and mutation 
operations, there will be an original parent population and 
a new offspring population. A fitness function should be 
devised to determine which of these parents and 
offspring’s can be survived into the next generation. After 
performing the fitness function, these parents, and 
offspring’s are filtered and a new generation is formed. 
These operations are iterated until the expected goal is 
achieved. Genetic algorithms guarantee high probability of 
improving the quality of the individuals over several 
generations according to the Schema Theorem [5]. 

III. BASIC PROCESS FLOW OF PATH-ORIENTED TEST 
DATA GENERATION USING GENETIC ALGORITHM 
A selected target path is the goal for GA to achieve, and an 
input vector X (a test data) is regarded as an individual. To 
generate path-oriented test data for the program under test 
using GA, there are five steps and Figure 1 depicts the 
basic process flow [6, 7].  
(1) Control flow graph construction. Control flow graph 
of the program under test may be constructed manually or 
automatically with related tools. It helps testers to select 
representative target paths.  
(2) Target path selection. In general, a program under 
test has too many paths to test completely. Thus, testers 
have to select meaningful paths as target paths.  
(3) Fitness function construction. In order to evaluate 
distance between the executed path and the target path, 
fitness function has to be constructed.  
(4) Program instrumentation. This means inserting 
probes at the beginning of every block of source code to 
monitor program execution and collect related information 
(e.g. fitness values of individuals).  
(5) Test data generation and the instrumented program 
execution. Original test data are chosen from their domain 
at random and GA generates new test data in order to 
achieve the target path. Finally, suitable test data that 
executes along the target paths may be generated or no 
suitable test data may be found because of exceeding max 
generation [22]. 

 
 

Figure 1. Basic process flow 

IV.  EXPERIMENTAL STUDIES 
Triangle classification program 
Triangle classification program has been widely used in 
the research area of software testing [ 22, 24]. It aims to 
determine if three input edges can form a triangle and so 
what type of triangle can be formed by them. Figure 2 
gives source code of the program. 

TraversedPath= [];
TriangleType='Not a Triangle';
if

((SideA+SideB>SideC)&&(SideB+SideC>Side
A)&&(SideC+SideA>SideB))

TraversedPath =[TraversedPath
'a'];

if
((SideA~=SideB)&&(SideB~=SideC)&&(SideC
~=SideA))

TraversedPath=[TraversedPath
'e'];

TriangleType='Scalene';
else

TraversedPath =[TraversedPath
'b'];

if
(((SideA==SideB)&&(SideB~=SideC))||((Si
deB==SideC)&& ...
(SideC~=SideA))||((SideC==SideA)&&(Side
A~=SideB)))

TraversedPath
=[TraversedPath 'f'];

TriangleType='Isosceles';
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else

TraversedPath=[TraversedPath 'c'];

TriangleType='Equilateral';
end

end
else

TraversedPath =[TraversedPath
'd'];
end

Figure 2. An example program 
 
1. Control flow graph construction: The tested program 
(Fig. 2 Triangle classification program) determines what 
kind of triangle can be formed by any three input lengths. 
The programs control flow diagram, which contains four 
paths, is shown in fig. 3.  

 
 

Figure 3. Control flow graph of the 
example Program 

 
2. Target path selection: 
Figure 3 is control flow graph of the triangle classification 
program, which consists of four paths: 

•  Path l: <d> //Not-a-triangle 
•  Path 2: <ae> //Scalene 
•  Path 3: <abf> //Isosceles 
•  Path 4: <abc> //Equilateral 

According to probability theory, the path <abc> is the 
most difficult path to be covered in path testing. Therefore, 
the path <abc> is selected as the target path. 
3. Test case generation and execution:  

Experimental settings 
Settings of standard genetic algorithm (SGA) are 

as following: 
(1) Coding: binary string 
(2) Length of chromosome: 3Nbits (N=8,           
10……..,15), and each edge are range from 1 to 
2N 
(3) Population size: from 1 to 1000 
(4) Stochastic universal sampling 
(5) Two-point crossover probability = 0.9 
(6) Mutation probability = 0.01 
(7) Generation gap = 0.96 
(8) Max generation = 1000 

 

Table 2 shows that the average number of test cases on the 
path of each generation. In this experiment we have used 
Genetic Algorithm for 10 generations with n=15, initial 
population with 1000 test cases. The size of the 
chromosome is 3. Mutation rate is 0.01. Selection rate 0.5. 
Figure 2 shows the average number of test cases on the 
path of each generation. 
 
 <abc> <d> <ae> <abf> time total 

test 
cases 

Gener Equila Not a 
Triangle 

Scalene Isosceles   

1 3 501 366 130 0.0874 1000 
2 1 375 81 43 0.0524 500 
3 0 359 99 42 0.0469 500 
4 1 341 106 52 0.0452 500 
5 1 342 113 44 0.0432 500 
6 0 322 124 54 0.0442 500 
7 0 335 122 43 0.0441 500 
8 1 354 81 64 0.0448 500 
9 1 342 94 63 0.0440 500 
10 1 360 82 57 0.0440 500 
Table 2.  Average number of test cases on the path of 
Fig.3 of each generation 
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Fig. 2 Average number of test cases on the path of Fig . 
3 of each generation 
 
Table 3 shows that the average number of test cases on the 
path of each generation. In this experiment we have used 
GA for 100 generations with n=15, initial population with 
1000 test cases.  The size of the chromosome is 3. 
Mutation rate is 0.09. Selection rate 0.5. Figure 3 shows 
the average number of test cases on the path of each 
generation. 
 
 <abc> <d> <ae> <abf> time total 

test 
cases 

Gener Equila Not a 
Triangle 

Scalene Isosceles   

1 4 487 355 154 0.0747 1000 
2 2 645 266 87 0.0953 1000 
3 4 702 214 80 0.0919 1000 
4 5 758 154 83 0.0899 1000 
5 0 797 146 57 0.0869 1000 
6 2 798 143 57 0.0878 1000 
7 0 845 108 47 0.0868 1000 
8 4 845 108 43 0.0909 1000 
9 0 839 104 57 0.0863 1000 
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10 1 847 112 40 0.0862 1000 
Table 3.  Average number of test cases on the path of 
Fig. 3 of each generation 
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Fig. 3 Average number of test cases on the path of Fig . 
3 of each generation 
 
Table 4 shows that the average number of test cases on the 
path of each generation. In this experiment we have used 
GA for 100 generations with n=100, initial population with 
1000 test cases. The size of the chromosome is 3. Mutation 
rate is 0.09. Selection rate 0.5. Figure 4 shows the average 
number of test cases on the path of each generation. 
 
 <abc> <d> <ae> <abf> time total 

test 
cases 

Gener Equila Not a 
Triangle 

Scalene Isosceles   

1 0 475 502 23 0.0768 1000 
2 0 613 367 20 0.1083 1000 
3 0 723 262 15 0.0890 1000 
4 0 758 236 6 0.0899 1000 
5 0 784 210 6 0.0867 1000 
6 0 803 190 7 0.0882 1000 
7 0 832 160 8 0.0880 1000 
8 0 867 131 2 0.0871 1000 
9 0 854 139 7 0.0873 1000 
10 0 853 141 6 0.0860 1000 
 
Table 4.  Average number of test cases on the path of 
Fig. 3 of each generation 
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Fig. 4 Average number of test cases on the path of Fig. 
3 of each generation 

V. CONCLUSION 
In this paper, the genetic algorithms are used to 
automatically generate test cases for path testing. The 
greatest merit of genetic algorithm in program testing is its 
simplicity. Each iteration of the genetic algorithms 
generates a generation of individuals. In practice, the 
computation time cannot be infinite, so that the iterations 
in the algorithm should be limited. Within the limited 
generations, solution derived by genetic algorithms may be 
trapped around a local optimum and as a result, fail to 
locate required may be trapped around unwanted paths and 
fail to locate the required global optimum. Although the 
tested cases generated by such algorithms may be trapped 
around unwanted paths and fail to locate the required 
paths, since the test cases of the first generation are 
normally distributed over the domain of the tested 
program, the probability of being trapped is very low. 
The quality of test cases produces by genetic algorithms is 
higher than the quality of test cases produced by random 
way because the algorithm can direct the generation of test 
cases to the desirable range fast. 
This paper shows that genetic algorithms are useful in 
reducing the time required for lengthy testing meaningfully 
by generating test cases for path testing. Furthermore, we 
build our Genetic Algorithm for structural testing for 
reduce execution time & generate more suitable test cases.  
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