
Int. J. Advanced Networking and Applications 911
Volume: 02, Issue: 06, Pages: 911-915 (2011)

Using Genetic Algorithm for Automated Efficient
Software Test Case Generation for Path Testing

Premal B. Nirpal
 Department of Computer Science & IT, Dr. B. A. M. University, Aurangabad, India. 431004

Email: premal.nirpal@gmail.com

K. V. Kale
Department of Computer Science & IT, Dr. B. A. M. University, Aurangabad, India. 431004

---ABSTRACT--
This paper discusses genetic algorithms that can automatically generate test cases to test selected path. This
algorithm takes a selected path as a target and executes sequences of operators iteratively for test cases to evolve.
The evolved test case can lead the program execution to achieve the target path. An automatic path-oriented test
data generation is not only a crucial problem but also a hot issue in the research area of software testing today.

Keywords - Genetic Algorithms, Path testing, Software Testing, Test case generation.
--

Date of Submission: 21 January 2011 Date of Acceptance: 07 April 2011
--

I. INTRODUCTION

Software being utilized in various situations and software
quality becomes more important than ever. Being main
means of software quality assurance, software testing is
very laborious and costly due to the act that it is accounts
for approximately 50 percent of the elapsed time and more
than 50 percent of the total cost in software development
[4, 5].
Automatic test data generation is a key problem in
software testing and its implementation can not only
significantly improve the effectiveness and efficiency but
also reduce the high cost of software testing[3, 4]. In
particular, it is notable that various structural test data
generation problem can be transformed into a path
oriented test data generation problem. Moreover, path
testing strategy can detect almost 65 ercent of errors in
program under test [8].
Although path-oriented test data generation is an
undesirable problem [6], researchers still attempt to
develop various methods and have made some progress.
These means can be classified into two types: static
methods and dynamic methods. Static methods include
domain reduction [10, 11] and symbolic execution [12]
etc. These means suffer from a number of problems when
they handle indefinite array, loops, pointer references and
procedure calls [13].
Dynamic methods include random testing, local search
approach [14], goal-oriented approach [15], chaining
approach [16] and evolutionary approach [13, 14-16]. As
values of input variables are determined when programs
execute, dynamic test data generation can avoid those
problems with that static methods are confronted. Being a

robust search method in complex spaces, genetic algorithm
was applied to test data generation in 1992 [14] and
evolutionary approach has been a burgeoning interest since
then. Related works [17], [16] and [18] indicate that GA-
based test data generation outperforms other dynamic
approaches e.g. random testing and local search.
The structure of this paper is organized as follows. Section
2 gives a brief introduction to Genetic Algorithms.
Section 3 Basic process flow of path-oriented test data
generation using GA. Section 4 describes experimental
settings and gives experimental results based on a triangle
classification program. Finally, section 5 summarizes the
paper with conclusions and directions for future work.

II. GENETIC ALGORITHMS
Genetic Algorithms begins with a set of initial individuals
as the first generation, which are sampled at random from
the problem domain. The algorithms are developed to
perform a series of operations that transform the present
generation into a new, fitter generation [22].
Each individual in each generation is evaluated with a
fitness function. Based on the evaluation, the evolution of
the individuals may approach the optimal solution.
The most common operations of genetic algorithms are
designed to produce efficient solution for the target
problem [15]. These primary operations include:
a) Reproduction: This operation assigns the reproduction
probability to each individual based on the output of the
fitness function. The individual with a higher ranking is
given a greater probability for reproduction. As a result,
the fitter individuals are allowed a better survival chance
from one generation to the next.
b) Crossover: This operation is used to produce the
descendants that make up the next generation. This

Int. J. Advanced Networking and Applications 912
Volume: 02, Issue: 06, Pages: 911-915 (2011)

operation involves the following crossbreeding
procedures:

i) Randomly select two individuals as a couple from the
parent generation.
ii) Randomly select a position of the genes,
corresponding to this couple, as the crossover point.
Thus, each gene is divided into two parts.
iii) Exchange the first parts of both genes corresponding
to the couple.

 iv) Add the two resulted individuals to the next
generation.
c) Mutation: This operation picks a gene at random and
changing its state according to the mutation probability.
The purpose of the mutation operation is to maintain the
diversity in a generation to prevent premature convergence
to a local optimal solution. The mutation probability is
given intuitively since there is no definite way to determine
the mutation probability [22].
Upon completion of crossover processing and mutation
operations, there will be an original parent population and
a new offspring population. A fitness function should be
devised to determine which of these parents and
offspring’s can be survived into the next generation. After
performing the fitness function, these parents, and
offspring’s are filtered and a new generation is formed.
These operations are iterated until the expected goal is
achieved. Genetic algorithms guarantee high probability of
improving the quality of the individuals over several
generations according to the Schema Theorem [5].

III. BASIC PROCESS FLOW OF PATH-ORIENTED TEST
DATA GENERATION USING GENETIC ALGORITHM
A selected target path is the goal for GA to achieve, and an
input vector X (a test data) is regarded as an individual. To
generate path-oriented test data for the program under test
using GA, there are five steps and Figure 1 depicts the
basic process flow [6, 7].
(1) Control flow graph construction. Control flow graph
of the program under test may be constructed manually or
automatically with related tools. It helps testers to select
representative target paths.
(2) Target path selection. In general, a program under
test has too many paths to test completely. Thus, testers
have to select meaningful paths as target paths.
(3) Fitness function construction. In order to evaluate
distance between the executed path and the target path,
fitness function has to be constructed.
(4) Program instrumentation. This means inserting
probes at the beginning of every block of source code to
monitor program execution and collect related information
(e.g. fitness values of individuals).
(5) Test data generation and the instrumented program
execution. Original test data are chosen from their domain
at random and GA generates new test data in order to
achieve the target path. Finally, suitable test data that
executes along the target paths may be generated or no
suitable test data may be found because of exceeding max
generation [22].

Figure 1. Basic process flow

IV. EXPERIMENTAL STUDIES
Triangle classification program
Triangle classification program has been widely used in
the research area of software testing [22, 24]. It aims to
determine if three input edges can form a triangle and so
what type of triangle can be formed by them. Figure 2
gives source code of the program.

TraversedPath= [];
TriangleType='Not a Triangle';
if

((SideA+SideB>SideC)&&(SideB+SideC>Side
A)&&(SideC+SideA>SideB))

TraversedPath =[TraversedPath
'a'];

if
((SideA~=SideB)&&(SideB~=SideC)&&(SideC
~=SideA))

TraversedPath=[TraversedPath
'e'];

TriangleType='Scalene';
else

TraversedPath =[TraversedPath
'b'];

if
(((SideA==SideB)&&(SideB~=SideC))||((Si
deB==SideC)&& ...
(SideC~=SideA))||((SideC==SideA)&&(Side
A~=SideB)))

TraversedPath
=[TraversedPath 'f'];

TriangleType='Isosceles';

Instrumented program execution

Satisfied or
Exceeded Max

generation

Control flow graph construction
& target path selection

Fitness function construction
& program instrumentation
Original test data generation

Get suitable test data or not
GA execution

Stop

Y

N

Start

Int. J. Advanced Networking and Applications 913
Volume: 02, Issue: 06, Pages: 911-915 (2011)

else

TraversedPath=[TraversedPath 'c'];

TriangleType='Equilateral';
end

end
else

TraversedPath =[TraversedPath
'd'];
end

Figure 2. An example program

1. Control flow graph construction: The tested program
(Fig. 2 Triangle classification program) determines what
kind of triangle can be formed by any three input lengths.
The programs control flow diagram, which contains four
paths, is shown in fig. 3.

Figure 3. Control flow graph of the
example Program

2. Target path selection:
Figure 3 is control flow graph of the triangle classification
program, which consists of four paths:

• Path l: <d> //Not-a-triangle
• Path 2: <ae> //Scalene
• Path 3: <abf> //Isosceles
• Path 4: <abc> //Equilateral

According to probability theory, the path <abc> is the
most difficult path to be covered in path testing. Therefore,
the path <abc> is selected as the target path.
3. Test case generation and execution:

Experimental settings
Settings of standard genetic algorithm (SGA) are

as following:
(1) Coding: binary string
(2) Length of chromosome: 3Nbits (N=8,
10……..,15), and each edge are range from 1 to
2N
(3) Population size: from 1 to 1000
(4) Stochastic universal sampling
(5) Two-point crossover probability = 0.9
(6) Mutation probability = 0.01
(7) Generation gap = 0.96
(8) Max generation = 1000

Table 2 shows that the average number of test cases on the
path of each generation. In this experiment we have used
Genetic Algorithm for 10 generations with n=15, initial
population with 1000 test cases. The size of the
chromosome is 3. Mutation rate is 0.01. Selection rate 0.5.
Figure 2 shows the average number of test cases on the
path of each generation.

 <abc> <d> <ae> <abf> time total

test
cases

Gener Equila Not a
Triangle

Scalene Isosceles

1 3 501 366 130 0.0874 1000
2 1 375 81 43 0.0524 500
3 0 359 99 42 0.0469 500
4 1 341 106 52 0.0452 500
5 1 342 113 44 0.0432 500
6 0 322 124 54 0.0442 500
7 0 335 122 43 0.0441 500
8 1 354 81 64 0.0448 500
9 1 342 94 63 0.0440 500
10 1 360 82 57 0.0440 500
Table 2. Average number of test cases on the path of
Fig.3 of each generation

GA Graph

0
100
200
300
400
500
600

1 2 3 4 5 6 7 8 9 10

Generations

Te
st

 C
as

es

Equilateral

Not a Triangle

Scalene

Isosceles

Fig. 2 Average number of test cases on the path of Fig .
3 of each generation

Table 3 shows that the average number of test cases on the
path of each generation. In this experiment we have used
GA for 100 generations with n=15, initial population with
1000 test cases. The size of the chromosome is 3.
Mutation rate is 0.09. Selection rate 0.5. Figure 3 shows
the average number of test cases on the path of each
generation.

 <abc> <d> <ae> <abf> time total

test
cases

Gener Equila Not a
Triangle

Scalene Isosceles

1 4 487 355 154 0.0747 1000
2 2 645 266 87 0.0953 1000
3 4 702 214 80 0.0919 1000
4 5 758 154 83 0.0899 1000
5 0 797 146 57 0.0869 1000
6 2 798 143 57 0.0878 1000
7 0 845 108 47 0.0868 1000
8 4 845 108 43 0.0909 1000
9 0 839 104 57 0.0863 1000

S

1

2

4

6

7

3

5

E

a

b

d

e

f
c

Int. J. Advanced Networking and Applications 914
Volume: 02, Issue: 06, Pages: 911-915 (2011)

10 1 847 112 40 0.0862 1000
Table 3. Average number of test cases on the path of
Fig. 3 of each generation

GA Graph

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

Generations

Te
st

 C
as

es Equilateral

Not a Triangle

Scalene

Isosceles

Fig. 3 Average number of test cases on the path of Fig .
3 of each generation

Table 4 shows that the average number of test cases on the
path of each generation. In this experiment we have used
GA for 100 generations with n=100, initial population with
1000 test cases. The size of the chromosome is 3. Mutation
rate is 0.09. Selection rate 0.5. Figure 4 shows the average
number of test cases on the path of each generation.

 <abc> <d> <ae> <abf> time total

test
cases

Gener Equila Not a
Triangle

Scalene Isosceles

1 0 475 502 23 0.0768 1000
2 0 613 367 20 0.1083 1000
3 0 723 262 15 0.0890 1000
4 0 758 236 6 0.0899 1000
5 0 784 210 6 0.0867 1000
6 0 803 190 7 0.0882 1000
7 0 832 160 8 0.0880 1000
8 0 867 131 2 0.0871 1000
9 0 854 139 7 0.0873 1000
10 0 853 141 6 0.0860 1000

Table 4. Average number of test cases on the path of
Fig. 3 of each generation

GA Graph

0
100
200
300
400
500
600
700
800
900

1000

1 2 3 4 5 6 7 8 9 10

Generations

Te
st

 C
as

es

Equilateral

Not a Triangle

Scalene

Isosceles

Fig. 4 Average number of test cases on the path of Fig.
3 of each generation

V. CONCLUSION
In this paper, the genetic algorithms are used to
automatically generate test cases for path testing. The
greatest merit of genetic algorithm in program testing is its
simplicity. Each iteration of the genetic algorithms
generates a generation of individuals. In practice, the
computation time cannot be infinite, so that the iterations
in the algorithm should be limited. Within the limited
generations, solution derived by genetic algorithms may be
trapped around a local optimum and as a result, fail to
locate required may be trapped around unwanted paths and
fail to locate the required global optimum. Although the
tested cases generated by such algorithms may be trapped
around unwanted paths and fail to locate the required
paths, since the test cases of the first generation are
normally distributed over the domain of the tested
program, the probability of being trapped is very low.
The quality of test cases produces by genetic algorithms is
higher than the quality of test cases produced by random
way because the algorithm can direct the generation of test
cases to the desirable range fast.
This paper shows that genetic algorithms are useful in
reducing the time required for lengthy testing meaningfully
by generating test cases for path testing. Furthermore, we
build our Genetic Algorithm for structural testing for
reduce execution time & generate more suitable test cases.

ACKNOWLEDGEMENTS

The authors wish to acknowledge UGC for the award of
Research Fellowship under Fellowship in Sciences to
Meritorious Students (RFSMS) scheme for carrying out
this research.

REFERENCES
[1] Roger S. Pressman: “Software Engineering”, A

Practitioner’s Approach 5th Edition, McGraw Hill,
1997.

[2] B. Beizer, Software Testing Techniques 2nd Edition,
International Thomson Computer Press, 1990.

[3] Srinivasan Desikan, Gopalaswamy Ramesh “Software
Testing Principles & Practices” PEARSON
Education, 2006.

[4] G. J. Myers, The Art of Software Testing.2nd ed.:
John Wiley & Sons Inc, 2004.

[5] B. Antonia, "Software Testing Research:
Achievements, Challenges, Dreams," in 2007 Future
of Software Engineering: IEEE Computer Society,
2007.

[6] Chen Yong and Zhong Yong, "Automatic Path-
Oriented Test Data Generation Using a Multi-
population Genetic lgorithm,"in Proceedings of
Fourth International Conference on Natural
Computation (ICNC '08), Jinan, China, 2008.

[7] Chen Yong, Zhong Yong, Bao Shengli, and He Famei,
"Structural Test Data Generation Using Immune
Genetic Algorithm," in The International Conference
2007 on Information Computing and Automation,
Chengdu, China, 2008.

[8] B. W. Kernighan and P. J. Plauger, The Elements of
Programming Style: McGraw-Hill, Inc. New York,
NY, USA, 1982.

Int. J. Advanced Networking and Applications 915
Volume: 02, Issue: 06, Pages: 911-915 (2011)

[9] E. J. Weyuker, "The applicability of program schema
results to programs," International Journal of Parallel
Programming, vol. 8, 1979,pp. 387-403.

[10] T. Y. Chen, T. H. Tse, and Z. Zhiquan, "Semi-
proving: an integrated method based on global
symbolic evaluation and metamorphic testing," in
Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis Roma,
Italy: ACM, 2002.

[11] S. Nguyen Tran and D. Yves, "Consistency techniques
for interprocedural test data generation," ACM
SIGSOFT Software Engineering Notes, vol. 28, 2003,
pp. 108-117.

[12] C. K. James, "A new approach to program testing," in
Proceedings of the international conference on
Reliable software Los Angeles, California: ACM,
1975.

[13] G. M. C C Michael, M Schatz "Generating software
test data by evolution," IEEE Transactions on
Software Engineering, vol. 27, 2001, pp. 1085-1110.

[14] B. Korel, "Automated software test data generation,"
IEEE Transactions on Software Engineering, vol. 16,
1990,pp. 870- 879.

[15] B. Korel, "Dynamic method for software test data
generation," Software Testing, Verification &
Reliability, vol. 2, 1992, pp. 203-213.

[16] J. Wegener, B. Kerstin, and P. Hartmut, "Automatic
Test Data Generation For Structural Testing Of
Embedded Software Systems By Evolutionary
Testing," in Proceedings of the Genetic and
Evolutionary Computation Conference: Morgan
Kaufmann Publishers Inc., 2002.

[17] W. Joachim, Andr, Baresel, and S. Harmen,
"Suitability of Evolutionary Algorithms for
Evolutionary Testing," in Proceedings of the 26th
International Computer Software and Applications
Conference on Prolonging Software Life:
Development and Redevelopment: IEEE Computer
Society, 2002.

[18] Christoph C. Michael, Gary McGraw and Michael A.
Schatz, “Generating Software Test Data by
Evolution”, IEEE Transactions On Software
Engineering, Vol. 27, No. 12, December 2001.

[19] Roy P Pargas, Mary Jean Harrold, Robert R Peck, “
Test Data Generation Using Genetic Algorithms”,
Journal of Software Testing, Verification and
Reliability, 1999,

[20] Alan C. Schultz, John J. Grefenstette, aid Kenneth A.
De Jong, “Test And Evaluation by Genetic
Algorithms”, IEEE, 1993.

[21] Joachim Wegener, Kerstin Buhr, Hartmut Pohlheim,
“Automatic Test Data Generation for Structural
Testing of Embedded Software Systems by
Evolutionary Testing”.

[22] Yong Chen1, Yong Zhong, Tingting Shi1 and
Jingyong Liu, “Comparison of Two Fitness Functions
for GA-based Path-Oriented Test Data Generation”,
2009 Fifth International Conference on Natural
Computation, IEEE, 2009.

[23] Richard A. DeMillo and A. Jefferson Offutt,
“Constraint-Based Automatic Test Data Generation”,
1EEE Transactions On Software Engineering, Vol.
17, No. 9, September 1991.

[24] Jin-Cherng Lin and Pu-Lin Yeh, “Using Genetic
Algorithms for Test Case Generation in Path Testing”,
IEEE, 2000.

[25] Debasis Mohapatra, Prachet Bhuyan and Durga P.
Mohapatra, “Automated Test Case Generation and Its
Optimization for Path Testing Using Genetic
Algorithm and Sampling”, WASE International
Conference on Information Engineering, 2009.

[26] Donald J. Berndt and Alison Watkins, “Investigating
the Performance of Genetic Algorithm-Based
Software Test Case Generation”, Proceedings of the
Eighth IEEE International Symposium on High
Assurance Systems Engineering (HASE’04) 2004.

[27] Xiajiong Shen, Qian Wang, Peipei Wang and Bo
Zhou, “Automatic Generation of Test Case based on
GATS Algorithm”, AA04Z148, 2007.

Biographies and Photographs

Mr. Premal B. Nirpal, UGC Research

Fellow, Department of Computer
Science and Information Technology,

Dr. B. A. M. University, Aurangabad.

Dr. K. V. Kale
Professor and Head, Department of Computer
Science and Information Technology, Dr. B. A.
M. University, Aurangabad.

